COMMUNICATIONS TO THE EDITOR

THE METHYL GROUP OF METHIONINE AS A SOURCE OF C₂₈ IN ERGOSTEROL¹

Sir:

It was reported recently that formate can serve as a source of C_{28} in the biosynthesis of ergosterol² or of eburicoic acid.³ We have incubated cell-free yeast homogenates with labelled sodium bicarbonate, formaldehyde, propionate-(1 or 2)-C¹⁴ and methionine-methyl-C¹⁴ and have found that more C14 is incorporated into the non-saponifiable lipids and the digitonin-precipitable sterols from methionine than from any of the other compounds. Thus, in one experiment 20.2% of the methioninemethyl-C14 radioactivity was found in the nonsaponifiable fraction, as compared to 1.2% for acetate-1-C¹⁴, 1.0% for NaHCO₃, 0.4% for form-aldehyde and 0.5% for propionate. In comparative experiments with the same yeast homogenate which we ran after the paper of Danielson and Bloch² came to our attention, methionine-methyl-C¹⁴ gave four times as much radioactivity in the digitonin-precipitable sterol fraction as sodium formate-C¹⁴.

To determine whether the radioactivity is concentrated in C_{28} , samples of ergosterol from incubations with acetate-1- C^{14} and methionine-methyl- C^{14} were ozonized according to Hanahan and Wakil.⁴ Comparison of the figures obtained with ergosterol made from acetate and from methionine by a yeast homogenate (Table I, Expt. 1) shows that in the

Table I

Degradation of Ergosterol-C¹⁴

		Source of C ¹⁴ , counts/mmole carbon/min.	
Expt.	Substance	Acetate-1- C ¹⁴	Methionine- methyl-C ¹⁴
1ª	Ergosterol	5,540	3,843
	Steam volatile frac- tion [°]	6,220	11,480
	Residue from steam		
	distillation	7,545	655
2°	Ergosterol acetate		946
	α,β -Dimethylbutyr-		
	aldehyde ^b		1,044
	Acetone ^b (C _{25,26,27})		165
	C ₂₃		110
	C_{28}^{d}		3,210
a That	we complet of errectarel	in Dunk 1 an	a mot dimantles

^a The two samples of ergosterol in Expt. 1 are not directly comparable, since much more C^{14} was used in the case of acetate. ^b Isolated as dinitrophenylhydrazone. ^c All samples counted after combustion to BaCO₃, corrected to infinite thickness. ^d Combustion of CHI₃ reportedly gives BaCO₄ of low specific activity.⁵

first case the steam-volatile fraction, α , β -dimethylbutyraldehyde, contains less radioactivity than

(1) This investigation was supported by the U. S. Public Health Service Grant No. C321, an Institutional Grant from the American Cancer Society, The Schering Corporation, Bloomfield, New Jersey and the Jane Coffin Childs Memorial Fund.

(2) H. Danielson and K. Bloch, THIS JOURNAL, 79, 500 (1957).

(3) W, G. Dauben, G. J. Fonken and G. A. Boswell, *ibid.*, **79**, 1000 (1957).

(4) D. G. Hanahan and S. J. Wakil, ibid., 75, 273 (1953).

the residue, representing the ring system. In the second case this relationship is reversed, as expected if the main incorporation of radioactivity were in C₂₈. In experiment 2, the ergosterol, obtained from incubation of whole yeast with methionine-methyl-C14, although recrystallized to constant specific activity, was subsequently found to be impure. However, the dinitrophenylhydrazone of the α,β -dimethyl-butyraldehyde was carefully purified before counting. Further degradation of this aldehyde shows that a predominant portion of the total radioactivity is located in C_{28} . When the correction factor suggested by Ehrensvard, et al.,5 for the combustion of C14HI3 to BaC14O3 is applied, the observed activity of C₂₈ is in acceptable agreement with the figure calculated from the specific activity of the α,β -dimethyl-butyraldehyde. Carbon 28 contains 20-30 times the radioactivity of the other carbon atoms in the molecule. Such a randomization of radioactivity was also observed by Dauben, et al., in the incorporation of C^{14} from formic acid into the analogous position in eburicoic acid.8

The major incorporation of C^{14} into C_{28} of ergosterol in our experiments may be accounted for by the well-known oxidation of the methyl group of methionine to formate in biological systems.⁶ However, transmethylation from sulfur to carbon, which has not been observed up to now, cannot be excluded since we find that aminopterin decreases the incorporation of C^{14} into ergosterol from formate- C^{14} but not from methionine-methyl- C^{14} . Other experiments indicate that squalene, but not zymosterol, is converted to ergosterol in yeast homogenates.

(5) G. Ehrensvard, Q. Reio, E. Saluste and R. Stjernholm, J. Biol. Chem., 189, 93 (1951).

(6) J. S. Fruton and S. Simmonds, "General Biochemistry," John Wiley and Sons, Inc., New York, N. Y., 1953, p. 714.

Worcester Foundation for Experimental Biology Allen M. Gold Shrewsbury, Massachusetts Erwin Schwenk Received March 16, 1957

DIFFUSION OF O¹⁸ AND OF PROTIUM IN D₂O-H₂O MIXTURES¹

Sir:

We wish to report some interesting and unexpected results obtained in this Laboratory in the course of studies on diffusion in liquid systems.²

The data were obtained for $25 \pm 0.02^{\circ}$ by means of the diaphragm cell technique.² Deuterium analyses were made pycnometrically, and those for O¹⁸ by the gradient tube density method,⁸ after first converting the samples of D₂O¹⁸-H₂O¹⁸ to H₂O¹⁸. This last was accomplished by vaporizing

(1) These investigations were supported in part by the Office of Ordnance Research.

(2) A. W. Adamson and R. R. Irani, Abstracts 130th Mtg., Amer. Chem. Soc., Atlantic City, N. J., September, 1956.

(3) A. Hvidt, G. Johansen, K. Linderstrom-Lang and F. Vaslow, Compt. rend. trav. Lab. Carlsberg, Ser. Chim., 29, No. 9.